

Reconfigurable Computer For Digital System Ware

By: Cyrille Yemeli Tasse , ymlcyr001@myuct.ac.za
Supervisor: Simon Winberg , simon.winberg@uct.ac.za

+

5432

*-

1. Introduction

● The aim is to design a computing system
where every computer application is a digital
system logic executed on reconfigurable
hardware. Such an application will be called a
Digital System Ware, or simply, a disyware.

2. Background

● The field of Reconfigurable Computing already
features computer applications developed as
digital systems logic. However only a select
few applications or algorithms are developed,
mainly so to achieve high performance co-
processing work that the CPU is not suited for.

● Each application gets implemented in its own
specific way for its own specific purpose.
There is hardly any generic framework (or
rule of thumb) to ease the development of
applications. Indeed this makes reconfigurable
computing hard, take long development time,
require high expertise from the developer,
and not welcoming to newbies to the field.

3. Methodology

● Previous research work has been made
towards finding a generic framework, but which
did not consider 2 fundamental difficulties:

➢ 1st is an inherently parallelised framework
design so to take full advantage of the inherently
parallel nature of a digital system logic.

➢ 2nd is a framework design that allows for a large
application to be broken down into portions such
that only those portions needing execution get
loaded onto the FPGA (and thus be executed).

● Conventional applications development are
characterised by what is called function-call.
An analogous concept called module-call is
used here. Every hardware module implements
several module operations. A module operation
is associated with a unique ID used to call that
operation, through a generic protocol called the
module-calling protocol.

4. Design

5. Results (so far)

6. Way Forward

7. Applications

● Module calls introduce performance overhead.
But this is relatively small compared to the work
done per module operation. Precisely, the usual
case where only one module-calling at-a-time is
performed takes at most 10 clock cycles.

● The prototype deliverable will be a ready-to-use
end-user reconfigurable computer that can
load several end-user applications and execute
all at the same time. Expected applications are:

● A simple graphical calculator (figure below) to
illustrate GUI integration, a simple synthesizer
to illustrate embedded system integration, and a
simple DSP tool to illustrate high performance.

2 – 3 + 4 * 5

19 ?=

● With a new high-level HDL designed so that it
inherently implements the framework, current
areas with high usage of reconfigurable
computing (such as Radio Astronomy and
Digital Signal Processing) will have an increase
in effectiveness and number of people involved.

● The merging of high performance computing
with the ease of developing any application will
bring reconfigurable computing closer to
completely replacing the processor-based
sequence of instructions computing paradigm.

● Yes indeed, the future of general purpose
computing systems lies in the development of
computer applications as digital systems logic
executed on reconfigurable hardware.

● Indeed the current general purpose computing
systems are based solely on the development
of computer applications as sequences of
instructions executed by a processor.

● Since the beginning of digital systems, CPU-
based computing systems have been the
common-place. However due to their recent
decrease in prices, FPGA-based systems are
now becoming common too. For this reason,
many are exploiting possible applications.

/* calculator.v
 This module does not
 need to process call_info.
*/
`timescale 1ns / 1ps
module calculator(
 //input [15:0] call_info,
 //input [31:0] stack_address,
 input [31:0] i2, i3, i4, i5,
 output [31:0] result
);
assign result = i2 - i3 + i4 * i5;
endmodule

● A large portion of the source code of an
application is implemented in the usual way.
The module-calling protocol is essentially just
an addition to encapsulate module operations.

● A caller module calls a callee module by
sending the (call_info, stack_address) data pair
to the operating system (OS). The OS then
forwards this data pair to the callee. The callee
detects which operation to perform from the info.

● The protocol uses the stack to store information
as well as to pass module-call arguments. This
in particular enables recursive module calls as
well as parallel execution of module operations.

● The call_info contains all the information needed
to locate the callee module. When no FPGA chip
implements the callee module the OS first
replaces the bitstream of a non-busy FPGA chip
with that which implements the callee module.

FPGA chip for the
Kernel System

FPGA chip for the
Operating System

Free FPGA chip for
User Applications

Free FPGA chip for
User Applications

Data
Bus

RC4DSW
Block-level design

Keyboard

Mouse

Screen RAM

SD Card

RAM

Flash

● The entire system is based on a 64-bit bus.

● The figure below shows the screen output of the
reconfigurable computer under execution. The
GUI-based command line interface is used to
execute other applications. This is similar to our
current general purpose computers. Therefore
indeed any application can be featured here.

mailto:ymlcyr001@myuct.ac.za
mailto:simon.winberg@uct.ac.za
http://techgeeze.techgeezecom.netdna-cdn.com/wp-content/uploads/2014/06/ubuntu-tv-pc-smartphone-tablet.jpg?x83460
https://en.opensuse.org/images/0/0b/Icon-user.png
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-4-ddr/nexys-4-ddr-2.png
http://unisci24.com/data_images/wlls/25/255120-idea.jpg

	Slide 1

